

Corporate Headquarters EMEA Headquarters Asia-Pacific Headquarters
100 California Street, 12th Floor
San Francisco, California 94111

York House
18 York Road
Maidenhead, Berkshire
SL6 1SF, United Kingdom

L7. 313 La Trobe Street
Melbourne VIC 3000
Australia

Tech Notes

A Tour of Delphi 2009
Marco Cantù

December 2008

A Tour of Delphi 2009

Embarcadero Technologies 2

INTRODUCTION: THE DELPHI IDE
Since Delphi 8 for .NET and Delphi 2005 for Win32, Delphi has embraced a new IDE that is based on
a slightly different metaphor, which favors embedded editors with designer panes docked to their
side, rather than floating editors and floating designers. This “second edition” of the Delphi IDE is
often indicated by its internal codename, Galileo.

Delphi 2009 features the 6th incarnation of the Galileo IDE. Not only is this the first version of the IDE
that has every designer converted to Unicode, but there are also some very interesting new features,
particularly in the area of project management.

INSTALLING AND RUNNING
Like Delphi 2007, the installation of Delphi 2009 is based on InstallAware. This time around, though,
the installation experience has been considerably improved, particularly in speed. Delphi 2009
installation can be completed in 20 minutes rather than several hours.

A noticeable change in this respect is the fact that the help is now a separate installation, so it can be
updated more frequently and separately from the main product (so you don't have to reinstall Delphi
to get updated help, or to reinstall help should you want to reinstall the IDE). Installing help can take
much more time than installing the actual product and the help install image is bigger than the IDE
one.

When installing on Windows Vista, you'll have (by default) the product installed in the following
folders:

C:\Program Files\CodeGear\RAD Studio\6.0
C:\Users\Public\Documents\RAD Studio\6.0\Demos\
C:\Program Files\Common Files\CodeGear Shared

.NET SDK NOT NEEDED
Previously, since Delphi 8 up to and including Delphi 2007, one of the prerequisites for installing the
IDE was the presence of the Microsoft .NET SDK (version 1.1 earlier, version 2.0 later). It is not
needed for Delphi 2009. You still have to install the considerably smaller Microsoft .NET runtime,
which you might already have as part of the operating system, but don't need the development kit,
which is much bigger and requires hundreds of MB.

In this version of Delphi, CodeGear is using Microsoft's Document Explorer, or DExplorer. This was
previously available only in the SDK, but now can be deployed as a separate install.

Delphi help is very large (which is why it takes so much time to install), as it includes both CodeGear
documentation and the Microsoft Platform documentation. In this release, however, the team fixed
some “ranking” issues so that Delphi-specific topics should always be listed before the generic
platform ones. Delphi-specific content was also much improved.

A Tour of Delphi 2009

Embarcadero Technologies 3

WINDOWS INSTALL CLEAN UP
At times, when uninstalling Delphi to replace it with an updated version, the installer complains,
stops and won't work as expected. In these cases, CodeGear recommends cleaning all of the
application folders (including some hidden ones that depend on the operating system). Alternatively,
you can use Microsoft’s own Windows Install Clean Up utility that can be found at:

http://support.microsoft.com/default.aspx?
 scid=kb;en-us;290301

Beware that using such a low-level tool can hamper your system, so proceed with caution (only after
reading the instructions and at your own risk).

THE -IDECAPTION FLAG
You probably know (although this was a well-kept secret for many years) that you can run multiple
instances of the IDE, possibly at the same time, with different registry settings using the -R
command line flag.

The problem with running run two different versions of the IDE at the same time is that it is hard to
tell which is which. Another companion command line parameter for the IDE is -idecaption, that
takes a caption as value. Summing the two flags you could run the IDE with the following link:

"C:\Program Files\CodeGear\RAD Studio\6.0\bin\bds.exe" -pDelphi -
rSmall -idecaption="Small Delphi"

This command runs the Delphi IDE with the Delphi Win32 personality only, activated the “Small”
registry settings, and changes the IDE caption to “Small Delphi”, as shown below:

If not specified from the command line, the IDE caption is retrieved from the Registry, in the
Personalities section, in which there is a different string for each version (or active personality) of the
IDE.

MANAGING DELPHI PROJECTS
Managing projects is a very common operation. If Delphi 2007 added some brand new concepts, like
the MSBuild support, the target builds (Debug and Release) and the pre-build and post-build events,
the new version makes these features more flexible and much easier to use, starting with a significant
revamp of the Project Manager itself. Before we look at the Project Manager, though, we have to
look to upgrading project files and the renewed Project Options dialog box.

A Tour of Delphi 2009

Embarcadero Technologies 4

UPGRADING PROJECT CONFIGURATION FILES
Since the early days of Delphi, the project source code file (with the .DPR extension) has contained
Object Pascal code and uses one or more separate project configuration files for storing other
settings. The format and extension of the project configuration file has changed a few times in recent
versions, moving from an INI file to an XML file and then to an XML file for MSBuild (the .DPROJ file
format).

From Delphi 2007 to Delphi 2009, the overall format of this project configuration file doesn't change.
But its content is indeed different, and Delphi 2007 doesn't recognize further options added by the
newer version of the IDE. When you open an existing Delphi 2007 project, the Delphi 2009 IDE will
ask you for the name of a backup file into which it can copy the existing version of the project
configuration file:

The default name for the project configuration backup file is the project name with the extension of
.dproj.2007. In this specific case, I renamed the project file as IedMonitor2007.dproj.
After you perform this operation, the IDE adds the following line to the message pane:

Upgrading project. Backup
C:\progetti\IedMonitor\IedMonitor2007.dproj created.

Note that an updated Delphi 2009 version of the project configuration file is not created until you
actually save it.

You can use the backup version to re-open the project in Delphi 2007. However, if you need
backwards compatibility, a better idea might be to save the Delphi 2009 version of the project with a
different name.

In the new .DPROJ file, Delphi 2009 adds a new project version tag:

 <ProjectVersion>11.1</ProjectVersion>

The upgrade involves changes in the build configuration (as explained later), and in the resource
management. The following sections are new or heavily modified:

A Tour of Delphi 2009

Embarcadero Technologies 5

<PropertyGroup Condition="'$(Config)'=='Release' or
 '$(Cfg_Release)'!=''">
 <Cfg_Release>true</Cfg_Release>
 <CfgParent>Base</CfgParent>
 <Base>true</Base>
</PropertyGroup>
<PropertyGroup Condition="'$(Config)'=='Debug' or
 '$(Cfg_Debug)'!=''">
 <Cfg_Debug>true</Cfg_Debug>
 <CfgParent>Base</CfgParent>
 <Base>true</Base>
</PropertyGroup>
<PropertyGroup Condition="'$(Base)'!=''">
 <DCC_DependencyCheckOutputName>SimpleApp.exe
 </DCC_DependencyCheckOutputName>
</PropertyGroup>
<ItemGroup>
 <DelphiCompile Include="SimpleApp.dpr">
 <MainSource>MainSource</MainSource>
 </DelphiCompile>
 <DCCReference Include="SimpleAppMainForm.pas">
 <Form>Form30</Form>
 </DCCReference>
 <BuildConfiguration Include="Base">
 <Key>Base</Key>
 </BuildConfiguration>
 <BuildConfiguration Include="Release">
 <Key>Cfg_Release</Key>
 <CfgParent>Base</CfgParent>
 </BuildConfiguration>
 <BuildConfiguration Include="Debug">
 <Key>Cfg_Debug</Key>
 <CfgParent>Base</CfgParent>
 </BuildConfiguration>
</ItemGroup>

If you try re-opening this project file in Delphi 2007 (the only past version recognizing this format),
you'll see the following error:

PROJECT OPTIONS DIALOG REDESIGNED
The Project Options dialog box is one of the Delphi dialogs I tend to use more often, and I guess I'm
not alone. That's why its extensive redesign in Delphi 2009 at times leaves me puzzled. The redesign
involves the pages with options that are part of the build configuration, and (as we'll see later in the
section “Build Configurations and Configuration Settings”) those pages of the dialog box are also

A Tour of Delphi 2009

Embarcadero Technologies 6

used inside the Project Configuration Manager. For example, look at the differences in the Delphi
Compiler Options page between Delphi 2007 and Delphi 2009:

The difference is very significant. The check boxes are replaced by “True/False” and radio buttons by
combo boxes with various options. There is also a help area at the bottom (minimized in the picture
above, as I wanted to fit all options of the page in the dialog), that provides limited information
about the various alternatives. One interesting element the “description” area provides the default
value for the option.

A Tour of Delphi 2009

Embarcadero Technologies 7

The graphical redesign takes a while to get used to; but in addition, items within each group are now
listed alphabetically, so they are in a different order than before. The directory options now under
the main Delphi Compiler node. But beside organizational changes, is there anything missing or
new?

NEW PROJECT OPTIONS FOR THE COMPILER
In the Delphi Compiler/Compiling page, which used to be called Compiler, the Code Generation
section has the following new options:

 Code inlining control corresponds to the $INLINE compiler directive and controls how
inlining works.

 Emit runtime type information corresponds to -$M flag on the command line or the $M
directive, and determines the generation of runtime time information for a given class (or all
of the classes of a project).

 Minimum enum size corresponds to -$Z flag (or the $Z directive) and determines the
minimum size used for values of enumerated types (a Byte, a Word, a Double Word, or a
Quad Word).

 String format checking, which is on by default, can be disabled to avoid some automatic
string format checks (like the calls to EnsureUnicodeString function and other functions
of the Ensure String family) and corresponds to the $STRINGCHECKS directive. This
compiler option is new to Delphi 2009 and was supposed to remain undocumented and fairly
hidden... so it is quite a surprise to see it prominently in Project Options dialog box.

 Code page was already in past versions but is now much more relevant in relationship with
how the AnsiString type works (as explained in the white paper of this series covering
Unicode in Delphi 2009).

The Debugging section has the new option Use imported data references (mapped to $G), which
controls the creation of imported data references (increasing memory efficiency but preventing the
access of global variables defined in other runtime packages).

The Runtime errors and Syntax options sections have the same elements (and the same defaults) as
past versions of Delphi. The Other options section sports new options, except for the Generate XML
documentation which was already available:

 Additional switches to pass to the compiler can be used to insert directly further command
line compiler options not specifically supported by the IDE, although having this feature
available now technically means that Delphi 2009 now supports each and every compiler
option.

 Allow unsafe code will let you compile code deemed unsafe for a managed environment like
.NET and makes little (or no) sense with the Win32 compiler.

 Look for 8.3 filenames also instructs the compiler to work on very old versions of Windows
and corresponds to the -P compiler option.

 Output unit dependency information will turn on the --depends compiler flag, which is
apparently not maintained for now.

OTHER NEW PROJECT OPTIONS
The Hints and Warnings page corresponds to the old Compiler Messages page. There are, of course,
several new hints related with Unicode strings and other new compiler features.

A Tour of Delphi 2009

Embarcadero Technologies 8

The Linking page, which used to be called Linker, is visually quite different (and much more compact)
but the only new option is Set base address for relocatable images.

The main level Delphi compiler page has exactly the same options previously found under
Directories/Conditionals. What can be quite confusing is that there is another page named
Directories and Conditionals which is part of the resource compiler configuration under the Resource
Compiler main level page. These pages are brand new and let you control the resource compiler
from the Delphi IDE in ways never experienced in the past. There is a specific section later in this
white paper, “Managing Resources in the IDE”, covering this topic.

DEFAULT PROJECTS LOCATION
Since Delphi 2005, the default location for all new projects has been under the user documents
folder. Few Delphi developers know this can be modified by setting a value for the Default project
edit box in the Environment Options page of the Tools | Options dialog box.

THE PROJECT MANAGER
Along with a redesign of the Project Options dialog box, Delphi 2009 sees a significant update of the
Project Manager pane, one of the most commonly used panes of the IDE. Even a cursory glance of
its window will reveal some of its new features:

You can see there is a new Build Configurations node, with sub nodes, used to activate a build
configuration in a much simpler way than in Delphi 2007. This is the topic covered in the later section
“Build Configurations and Configuration Settings”.

The Project Manager toolbar has several new buttons. The new Sync button selects the current file in
the editor in the Project Manager, only if the file is part of the project, of course. The opposite
operation (that is, activate the current selection of the Project Manager in the editor) can be done
with a double-click.

A Tour of Delphi 2009

Embarcadero Technologies 9

The Expand and Collapse buttons will recursively expand and collapse all nodes under the current
node. Apply Expand to a project group and you'll see a tree with all the configuration and file nodes
of all projects in the group. Very handy, I have to say. The fourth new button, Views, is covered in the
next section.

PROJECT MANAGER VIEWS
Another brand new feature is the Project Manager Views configuration. On the right side of the
toolbar, you can see a new Views button that lets you change how the Project Manager shows files
that have been placed in different folders. There are three options. I tested them by creating a
sample program (called ProjManagerTest) with two forms in the main folder and two units in a
secondary folder called Shared and placed at the same level in the file system hierarchy:

 Directory (Nested) is the default setting (and the only one available in Delphi 8 to Delphi
2007) that shows the files grouped by directory and the directories mimic the actual disk
structure with separate nodes you can expand (so you might have to expand multiple nodes
to move down a couple of sub-folders):

 Directory (Flat) is a new view in which the files are still divided by directory but each different

directory is part of a list regardless of its position on the file system. In other words, you get a
list of folders, each containing files, rather than (possibly) other nested folders:

A Tour of Delphi 2009

Embarcadero Technologies 10

 List is a new view corresponding to the traditional Delphi 7 list of files in the project manager.

Directories are simply ignored and you can an alphabetic list of files:

BUILD CONFIGURATIONS AND CONFIGURATION SETTINGS
As I mentioned earlier (and you can see from the images on the previous pages), the Project
Manager has a new Build Configurations node for every project (that is, in cases where you are
working with a project group with multiple projects active). This node replaces the rather
cumbersome separate window that used to manage the build configuration in Delphi 2007. Using the
node and its sub-nodes you can change the current build configuration with a double-click, and
execute an actual build directly on the given node.

You can add a new configuration by selecting either a specific build configuration or the main node.
Depending on the item selected when you do the operation, you'll create a main configuration or a
sub-configuration. To be more precise, the node you pick determines the base configuration, since
even the predefined configurations inherit their core setting from the Base configuration (which is the
core configuration from which Debug and Release inherit).

What do I mean by “inherit settings” from a configuration? Delphi 2009 has a new configuration
management system, in which you can apply a setting to a specific configuration (like Debug or
Release) or set an option that the two configurations inherit from the Base configuration. In a specific
configuration you can see the specific value and the one inherited from a base configuration in two
consecutive lines, see if they match and change either one or the other (affecting also the specific
configuration). This is archived by expanding each configuration setting line by selecting the plus

A Tour of Delphi 2009

Embarcadero Technologies 11

sign on the left. This is what you can get by expanding the three Runtime errors lines in the Delphi
Compiler/Compiling page:
Modifying the setting in the Base configuration also affects any other configuration which inherits
from that setting.

In the Project Manager, you can select a build configuration and export its settings to an “option
set” file. This is like saving a configuration template or skeleton to an external file and the
configuration will be linked to the file.

This makes it easy to move settings to a new or another existing project, as you can use the Project
Manager (using the Apply Options Set local menu item while on a build configuration) or the Project
Options dialog box (using the Apply Options button) to import a set of configuration options. In
both cases Delphi opens up the Apply Option Set dialog box, where you can pick a file and choose
whether to keep the external configuration file linked (so that a change in the file will be reflected in
the projects using it) or simply merge the current settings using some priority rules:

Once you have created an external option set on a file, you can edit it from any project that refers to
it, using the Edit local menu of the Project Manager pane. This opens up an editor containing a
subset of the pages of the Project Options dialog box, as shown below:
The .OPTSET file is an XML file with a format similar to the .DPROJ format, again based on the

A Tour of Delphi 2009

Embarcadero Technologies 12

MSBUILD XML format, and an OptionSet project type. In this specific example the
ProjManagerTestOptionsSet.optset file has the following content:

<Project xmlns="http://.../msbuild/2003">
 <PropertyGroup>
 <DCC_RunTimeTypeInfo>true</DCC_RunTimeTypeInfo>
 </PropertyGroup>
 <ProjectExtensions>
 <Borland.Personality>
 Delphi.Personality
 </Borland.Personality>
 <Borland.ProjectType>
 OptionSet
 </Borland.ProjectType>
 <BorlandProject>
 <Delphi.Personality/>
 </BorlandProject>
 </ProjectExtensions>
</Project>

PROJECT CONFIGURATION MANAGER
Because the build options are available directly in the Project Manager pane, you don't have to use
the Configuration Manager to change the current build configuration. Still, the Configuration
Manager dialog box was quite handy also because it could let you change the build configuration for
many projects in a project group at the same time. In fact, the Configuration Manager is still available
in Delphi 2009, and in a much improved way: it lets you manage the various build configuration and
option sets for all of the projects of a group at once.

To invoke the Configuration Manager you cannot use the local menu of the Project Manager, as in
Delphi 2007, but have to select the corresponding item in the Project menu of the Delphi main
menu.

When you do, you'll get this redesigned user interface:

The left side displays a list of projects and the active configuration for each. On the right, you see
some details for the selected configuration, like the list of the non-default settings (the one in the

A Tour of Delphi 2009

Embarcadero Technologies 13

image is the summary of the option set file listed in the previous section). Using the tab you can also
filter the projects on the left side according to the given configuration or option set active.

In Delphi 2009, the Configuration Manager lets you edit the project options for each build
configuration, add new configurations, create or edit option sets, modify the active configuration...
and perform most of the related operations in a single location, even if it's not trivial to use.

When you are working on multiple projects within a project group, the Configuration Manager has a
distinct advantage over browsing in the Project Manager to work on the build configurations. For
single projects, the Project Manager now has all you need.

MANAGING RESOURCES IN THE IDE
In the most recent versions of Delphi, you could add resource scripts (.RC files) or compiled resource
files (.RES files) to the Project Manager to let it compile them along with the project linking them to
the executable. In Delphi 2009 managing resources has been simplified by the inclusion of a few
more tools.

First, you can now drag individual resource files to the Project Manager to get them included as
resources in a project. You can drag icons, bitmaps, and more. Delphi will generate a resource script
files for these extra project resources, and compile it directly along with your program, embedding
these resources in the executable. You can change any attribute of these resource files (including
their internal name) in the Object Inspector:

Secondly, under the Project pull-down of the main menu of the IDE there is a new Resources menu
item. Selecting this item brings up the Resources dialog box, which you can use to revise all of the
resources of the program, add new resource files, rename them, change the format, and so on:

A Tour of Delphi 2009

Embarcadero Technologies 14

By adding a few resources to a project, Delphi will generate a proper resource file for you at compile
time. For a program called ResourceTest (with the resources depicted above), Delphi 2009 generates
a resource script file listing the project resources called ResourceTestResource.rc:

Icon_Factory Icon "FACTORY.ICO"
Bitmap_Shipping Bitmap "SHIPPING.BMP"

This resource script file is not added to the project (if you do so, you'll see duplicate resource
warnings), but it is compiled along with it. In fact, if you make an error, like declaring your bitmap as
an icon, the compiler will stop with the error:

[BRCC32 Error] ResourceTestResource.rc(2): resource file
SHIPPING.BMP is not in 3.00 format

and open the resource script file at the offending line. At compile time, Delphi 2009 generates (or
updates) the resource script file, compiles it, and binds it to the executable. The intermediary file is a
file with extension DRES that's included in the project with a directive automatically added to the
project source code file (with the standard RES file including the project icon and string resources):

program ResourceTest;

{$R *.dres}

uses
 Forms,
 ResourceTest_MainForm in
 'ResourceTest_MainForm.pas' {FormResourceTest};

{$R *.res}

begin
 Application.Initialize;
 ...

MSBuild support has been present in the resource compilation steps in the since Delphi 2007. Here
is the related output you'll see if you keep the -Verbose flag of the resource compiler options on:

c:\program files\codegear\rad studio\6.0\bin\cgrc.exe -c65001 -v
ResourceTestResource.rc -foResourceTest.dres

CodeGear Resource Compiler/Binder
Version 1.00 Copyright (c) 2008 Embarcadero Technologies Inc.

Microsoft (R) Windows (R) Resource Compiler Version 6.0.5724.0
Copyright (C) Microsoft Corporation. All rights reserved.

Creating ResourceTest.dres
Using codepage 65001 as default

ResourceTestResource.rc.

Writing ICON:1, lang:0x409, size 744
Writing GROUP_ICON:ICON_FACTORY, lang:0x409, size 20.

A Tour of Delphi 2009

Embarcadero Technologies 15

Writing BITMAP:BITMAP_SHIPPING, lang:0x409, size 44264
In case you've never used Windows resources directly, the ResourceTest program has a few lines of
code to load the icon as the application and main form icon and to load the bitmap in an Image
component:

procedure TFormResourceTest.btnGifClick(
 Sender: TObject);
begin
 Image1.Picture.Bitmap.LoadFromResourceName(
 hInstance, 'Bitmap_Shipping');
end;

procedure TFormResourceTest.btnIconClick(
 Sender: TObject);
begin
 Icon.LoadFromResourceName(hInstance, 'Icon_Factory');
 Application.Icon.LoadFromResourceName(
 hInstance, 'Icon_Factory');
end;

A “NEW” RESOURCE COMPILER
Previous versions of Delphi, up to and including Delphi 2007, used the Borland Resource Compiler
(BRCC32.EXE).

Delphi 2009 ships with a new resource compiler, or (to be more precise) a different resource
compiler: the one from the Microsoft Windows SDK. This is certainly beneficial in terms of support for
all of new resource formats Windows handles, but causes a few problems due to the fact the Borland
resource compiler from the early days extended the Microsoft one, providing extra features that are
now lost. You can set which resource compiler to use by setting the corresponding option in the
resource compiler section of the Project Options dialog box (which lets you edit several other
parameters of the resource compiler):

A Tour of Delphi 2009

Embarcadero Technologies 16

The Windows SDK Resource Compiler is invoked through the new CodeGear Resource
Compiler/Binder, which is simply a front end to the SDK compiler. Changes in the resource compiler
include the added ability to handle image (binary) data inline, to support trailing commas after
strings in a string list, the different way to handle strings (now treated as C-language strings, forcing
you to escape any \ in a file name with a double backslash), the different way to manage the folders
for includes, and the like...

Again, if you've never used resource files directly, you can probably ignore any of these changes.
Anything managed directly by the Delphi environment, from the embedding of DFM files as
resources to the use of the resourcestring declaration, is fully backwards-compatible. If you did
use resources directly, you should revise your resource files with some care.

THE DELPHI CLASS EXPLORER
A brand new pane in Delphi 2009 is the Delphi Class Explorer pane (available from the Delphi Class
Explorer item from the View menu). The Delphi Class Explorer offers a project wide representation of
the symbols, which is different from the Structure View which shows a (somewhat similar) graphical
representation of the elements of a single unit.

At the first level of the Delphi Class Explorer, you'll see a list of nodes hosting the global definition of
each unit (plus the project file), while the remaining nodes show all of the classes defined in the
project:

For each class you can see the specific members (not the inherited ones) and the relationship with
other classes. This is depicted according to the selection in the first toolbar button: Base to derived
(shown above), Derived to base, or Container. In this last case, classes (and globals) are divided by
unit and no inheritance relationship is displayed:

A Tour of Delphi 2009

Embarcadero Technologies 17

The local menu lets you add a new field to a class, a new operation (or a method, including
constructors and destructors), or a property, as in the image below:

Adding a property works in a proper Delphi way (much more than using UML-based modeling). The
tools tend to map to setter and getter methods though you can go for a direct field mapping if you
prefer, by adding a property and asking for a corresponding field to be created.

A Tour of Delphi 2009

Embarcadero Technologies 18

The Delphi Class Explorer will add the following lines to the class, as in the previous screen shot:

type
 TBaseClass = class
 strict private
 function GetAnotherInteger : Integer;
 procedure SetAnotherInteger(val : Integer);
 public
 property AnotherInteger : Integer
 read GetAnotherInteger write SetAnotherInteger;
 strict private
 var
 FAnotherInteger:Integer;
 end;

I find the use of a strict private var block quite odd, but it is formally correct and probably
adding the extra var keyword makes code generation easier and less risky. I were to reformat the
code to my liking, I'd do more than just declaring the property and I’d use Class Completion, which
produces cleaner and more standard Delphi code. For me, the Delphi Class Explorer is an effective
tool for navigating the source code of a project, and I'd rather use it than the Model View unless I
needed to generate UML diagrams.

OTHER NEW FEATURES
The updated Project Options dialog, the new features of the Project Manager and the extended
build configurations, the improved support for resources, and the Class Explorer are probably the
most significant new features of the IDE in Delphi 2009, if you don't consider the fact that the entire
IDE has been Unicode enabled.

This section lists some of the many other minor features that can help you in the day-to-day work
with the Delphi development environment. Other noticeable IDE improvements relate to:

• The Integrated Translation Manager (ITM), which has been revised for Unicode support and
improved in various areas.

• The changes in the IDE related with the large changes in COM support and the Type Library
editor.

TOOL PALETTE SEARCH BOX
In Delphi 2006, you could type while the Tool Palette was selected to filter components starting with
those letters (with the exception of the initial T). In Delphi 2007 you could do the same, but also by
selecting text inside the component name, so you could pick, say, IdHTTP by typing the more
obvious HTTP.

In Delphi 2009, the Tool Palette has the same behavior as Delphi 2007, but with a different user
interface that makes it more obvious to all users that you can search the components list:

A Tour of Delphi 2009

Embarcadero Technologies 19

As you select the palette (the handy shortcut is Ctrl+Alt+P), you can start typing in the search box
(rather than in the caption of the pane) and the Tool Palette will filter the components being
displayed:

There is another change in the Tool Palette. As many people complained because of the excessive
scrolling needed to reach the categories towards the bottom of the list, the auto-collapse of
categories is now the default behavior. Another behavior you can fine-tune is whether the current
selection of the Search box is kept after selecting a component or not.

UPDATED COMPONENT WIZARDS
The dialog boxes used to create a new VCL component or import a component (an ActiveX control
or a .NET assembly, to be used like a COM control) have been improved and turned into multi-step
wizards. The actual capability to create an empty component skeleton or one wrapping an external
control has not been modified significantly. The only new feature is the ability (from both wizards) to
install the component into an existing package or into a new one which you have to name.

The relevant change is in the user interface of this wizard where you can activate from the
Components menu of the IDE. For example, the initial page of the New VCL Component wizard has
a search box used to filter the base class component to inherit from:

A Tour of Delphi 2009

Embarcadero Technologies 20

As you proceed, filling in the class name and other standard details, you'll get to the final page,
which lets you create a new package or add the new component to an existing one:
If you have an active package project, you'll see an extra option to add the new component to it.

Similar capabilities have been added to the Import Component wizard.

A Tour of Delphi 2009

Embarcadero Technologies 21

DEBUGGER
Like the rest of the IDE, the debugger fully supports Unicode, too. This support was partially
available in past versions, but Delphi 2009 extends it.

For example, if you inspect a string variable with Run | Inspect (or Debug | Inspect in the editor local
menu) not only will you get the proper Unicode value but an indication at the bottom will inform you
of the actual string type of the variable. Below you can see a comparison between the Inspect pane
for an AnsiString and a UnicodeString (reported simply as string):

The two windows show the same string, but the first couldn't be converted properly due to the
Chinese characters.

Other features of the debugger don't relate to Unicode support such as the CPU view supports the
SSE3 and SSE4 instructions (minor for someone like me who infrequently uses assembly language).

A much more interesting, even if still quite low-level, feature is the support of the debugger for the
Wait Chain Traversal feature of Vista (and Windows Server 2008). For more information, see an
MSDN technical article that describes Wait Chain Traversal at the operating system level and a blog
post by Chris Hesik of CodeGear about this new feature of the Delphi debugger at these URLs:

http://msdn.microsoft.com/en-us/library/ms681622.aspx
http://blogs.codegear.com/chrishesik/2008/07/21/34833

The Threads Status pane has an extra column with information about various threads that are
contributing to a deadlock that can help you understand your multi-threaded applications.

DEBUGGING AND NEW LANGUAGE FEATURES
Even if the debugger looks quite similar to the previous version, a lot of effort was devoted to allow
users to debug applications that use generics and anonymous methods. Because of the
sophisticated code generation done in the background, the code you are debugging is quite
different from that which you originally wrote. Even with some limited glitches, debugging the new
language features generally works well enough, and that was far from an easy task to achieve.

A Tour of Delphi 2009

Embarcadero Technologies 22

PROJECT MANAGEMENT COMES TO DELPHI

The Delphi IDE has been significantly extended over the last few editions, and Delphi 2009 continues
in this trend. The most relevant feature overall is probably the increased stability of the IDE. Next
come the extensions to the project management features, with support for hierarchical build
configuration, options settings you can move from a project to another, integrated resource
management, and multiple Project Manager views to adapt this pane to the user preferences.
Improved configuration management makes it a lot easier to work with larger projects, even
compared to the classic editions like Delphi 7. I'm pretty sure the impact of these new features on
the everyday work of Delphi developers will be significant The Delphi 2009 IDE is well worth the
upgrade.

ABOUT THE AUTHOR
This paper has been written for Embarcadero Technologies by Marco Cantù, author of the best-
selling series Mastering Delphi. The content has been extracted from his latest book “Delphi 2009
Handbook”, http://www.marcocantu.com/dh2009. You can read about Marco on his blog
(http://blog.marcocantu.com) and reach him at his email address marco.cantu@gmail.com.

Embarcadero Technologies, Inc. is a leading provider of award-winning tools for application
developers and database professionals so they can design systems right, build them faster and run
them better, regardless of their platform or programming language. Ninety of the Fortune 100 and
an active community of more than three million users worldwide rely on Embarcadero products to
increase productivity, reduce costs, simplify change management and compliance and accelerate
innovation. The company’s flagship tools include: Embarcadero® Change Manager™, CodeGear™
RAD Studio, DBArtisan®, Delphi®, ER/Studio®, JBuilder® and Rapid SQL®. Founded in 1993,
Embarcadero is headquartered in San Francisco, with offices located around the world. Embarcadero
is online at www.embarcadero.com.

